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Abstract. We propose a q-deformed model of anharmonic vibrations in diatomic molecules. We study the
applicability of the model to the phenomenological Dunham expansion by comparison with experimental
data. In contrast with other applications where it is difficult to find a physical interpretation for the
deformation parameter, q, in our analysis it is directly related to the third-order coefficient in the Dunham
expansion. We study the consistency of the parameters that determine the q-deformed system by comparing
them with the vibrational terms fitted to 161 electronic states of diatomic molecules. We show how to
include both positive and negative anharmonicities in a simple and systematic way.

PACS. 33.15.Mt Rotation, vibration, and vibration-rotation constants – 02.20.Uw Quantum groups –
31.15.Hz Group theory – 03.65.Fd Algebraic methods – 02.20.-a Group theory

1 Introduction

Q-algebras were originally conceived as a means of solv-
ing the quantum Yang–Baxter equation [1], but in the last
decade a great number of applications have been found in
diverse areas of physics, ranging from the deformation of
conformal-field theories [2] to optics [3] and nuclear and
molecular spectroscopy [4–6]. On the other hand, algebraic
models have been proposed and applied systematically in
many fields, including in a relevant way the study of nuclei
and molecules [7,8]. This kind of approach has simplified
the n-body problem dramatically and has given rise to nu-
merous new insights including, for example, a supersym-
metric description of quartets of nuclei and the formula-
tion of tractable models of polyatomic molecules [9]. In the
latter case these methods combine the use of Lie-algebraic
and discrete-symmetry techniques, which respectively de-
scribe the interactions and the global symmetry of these
systems. In particular, the su(2) algebra has been pro-
posed as a basic algebraic structure, given its connection
to the Morse potential [8]. This permits an algebraic treat-
ment of anharmonicities, much in the same fashion as
the harmonic-oscillator algebra is used in connection with
harmonic motion. This phenomenon becomes increasingly
important as vibrations are excited to states which are
not necessarily higher in energy but correspond to over-
tone and combination modes. While the Morse potential
leads to a fairly good approximation to the spectroscopic
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properties of most diatomic molecules, it has some limi-
tations. For example, its energy eigenvalues contain only
quadratic corrections to the equally-spaced harmonic be-
haviour, while terms of higher-order are often required in
the phenomenological Dunham expansion [10] to produce
an accurate fit to the observed vibrational energies.

While very useful, the Dunham expansion constitutes
a rather complex theoretical framework. The potential is
assumed to be expressible as a series expansion in powers
of the relative displacement coordinate. The coefficients
appearing in this expansion of the potential can then
be related to the Dunham coefficients for the rotation-
vibration energies. Wave functions can then be calculated
by means of a recursive procedure [10,11]. This method-
ology, however, usually involves a very large number of
independent parameters and other methods are often sim-
pler to apply and involve less parameters. See, for ex-
ample, the recent paper [12], where it is shown that a
modified Lennard-Jones potential, involving 16 fitted pa-
rameters, gives results comparable to an unconstrained
62-parameter Dunham expansion. It is thus an interesting
problem to see whether an algebraic framework can be
constructed in such a way as to include higher order cor-
rections, with as few parameters as possible, while main-
taining its simplicity and providing a simpler way to deter-
mine the Hamiltonian and corresponding wave functions.

In this paper we investigate an extension of the su(2)
framework, by considering the q-deformation of the Morse
Hamiltonian. We then test our ideas by comparing a
series expansion of the q-Morse energy expression with
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experimental Dunham expansions for a large number of
molecules. As a first step we restrict our analysis to test
the consistency of this q-extension with respect to the
Dunham expansion. A subsequent and more delicate test
should include the evaluation of the q-deformed Morse vi-
brational eigenfunctions and the calculation of dipole in-
tensities in the same fashion as for the su(2) model. We
wish to emphasize that, while other studies have consid-
ered the deformation of both vibrational and rotational
degrees of freedom in molecules [4–6], our approach is
simpler and more basic as we aim to generalise an al-
ready established model for vibrational spectroscopy that
is not restricted to diatomic molecules but can be extended
to polyatomic systems, by q-deforming the fundamental
bond interaction. In addition, we test the q-deformation
extensively by comparing with the Dunham parameters of
161 electronic states of diatomic molecules.

We now discuss the traditional treatment of anhar-
monic vibrations using the Dunham expansion.

2 Molecular anharmonic vibrations

The phenomenological description of the vibrational en-
ergy of diatomic molecules in a given electronic state
is given by Dunham’s expansion [10], traditionally writ-
ten as:

Ev = hcωe

(
v + 1

2

) − hcωexe

(
v + 1

2

)2

+ hcωeye

(
v + 1

2

)3 + . . . (1)

where c is the speed of light in vacuum and v is the
vibrational quantum number. The vibrational molecular
constants ωe, xe and ye are obtained by fitting the po-
tential curve to the experimental spectral data, xe � 1,
ye � xe. While the constant xe is nearly always positive,
the constant ye can be positive or negative and is often
very small [13]. The terms of quadratic and higher order
with respect to (v + 1/2) in expansion (1) account for
the anharmonic character of molecular vibrations and the
constant xe is called the anharmonicity constant.

The expansion (1) is part of the more general
Dunham description of the rotational-vibrational energy
of molecules [10,14]

Ev,J =
∑

l,m

ylm

(
v + 1

2

)l {J(J + 1)}m (2)

where J is the angular momentum and the coefficients ylm

are often called Dunham coefficients. Here, y10 = hcωe,
y20 = −hcωexe, y30 = hcωeye, and the vibrational part is
obtained by taking the terms with m = 0, i.e. by ignoring
the rotational bands built on each vibrational bandhead.
These parameters are essential since structural informa-
tion is contained fundamentally in the vibrational spectra.
Rotation-vibration interaction can usually be treated in a
perturbative fashion.

Dunham expansion provides a convenient, empirical
and model-free way of organising a large quantity of spec-
tral data. It also provides a procedure for comparing data

with the calculations arising from model potentials such
as the Morse potential. As explained in the Introduction,
however, this expansion, has the disadvantage that it is
quite complex and usually involves a large number of pa-
rameters. The determination of wavefunctions is also non-
trivial [11].

If the expansion (1) is truncated to the quadratic term,
one obtains essentially the discrete spectrum of the Morse
potential

EM
v = hcωe

{

v +
1
2
− xe

(
v +

1
2

)2
}

. (3)

The Morse potential [15],

V M (r − re) = De

(
1 − e−β(r−re)

)2

(4)

describes reasonably well the potential energy of diatomic
molecules near the equilibrium bondlength re and ac-
counts for the anharmonicity of the molecular vibrations.
It is characterised by two parameters De (the depth of the
minimum of the curve) and β (known as the restitution
constant in the harmonic approximation) where β > 0.
Using the Hamiltonian,

HM = − �

2µ
∇2 + VM (5)

where µ is the reduced mass of the molecule, Morse [15]
solved the Schrödinger equation exactly, and found the
quantised energy-levels

EM
v = hc

{

β

√
De�

πcµ

(
v + 1

2

) − �β2

4πcµ

(
v + 1

2

)2

}

. (6)

Comparing the coefficients in the expressions (3) and (6),
the well-known relations between the Morse parameters
De and β and the Dunham coefficients are obtained as

De =
ωe

4xe
and β =

√
4πc

�
µωexe. (7)

These relations are also known as consistency condi-
tions [13,16].

One significant feature of the Morse potential is that
the number of bound energy-levels is finite, i.e. v =
0, 1, 2, . . . [vM ], where the symbol [κ] denotes the largest
integer smaller than or equal to κ, and vM indicates the
position of the maximum of the Morse energy (3) with
respect to vibrational quantum number v,

vM =
1
2

(
1
xe

− 1
)

. (8)

The number of levels in the well is thus given by [vM ]+ 1.
In what follows we will use Dunham expansion trun-

cated to the cubic term. It is convenient to write the en-
ergies in the form:

E′
v = Ev/hcωe =

(
v +

1
2

)
−xe

(
v +

1
2

)2

+ye

(
v +

1
2

)3

.

(9)
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The truncation is natural as the experimental data show
that each of the coefficients in the expansion is much
smaller than the preceding one, and furthermore the con-
tribution of terms beyond the cubic term is negligibly
small for all known diatomic molecules and seldom used
in practice [13,14].

The model we propose in the next section aims to de-
fine a Hamiltonian which leads to Dunham-like formu-
lae for the molecular vibrations using natural symmetry
principles starting from an appropriate deformation of the
Morse Hamiltonian.

3 The model and its approximations

3.1 The Hamiltonian

We shall use a Hamiltonian that can accommodate in dif-
ferent approximations both the Morse energy (3) and the
Dunham expansion (9). This Hamiltonian is given by

H = α (Ĵ+Ĵ− + Ĵ−Ĵ+) (10)

where α is a constant which we shall choose below, Ĵ+ and
Ĵ− are the raising and lowering generators of the quan-
tum group Uq(su(2)) [1] which is a deformation of the
algebra su(2), q is a complex number, called deformation
parameter. Such deformations are called q-deformations
and matters are arranged so that for q = 1 one recovers
the classical situation (e.g., su(2) in this case). To be close
to the usual formalism we shall realise these generators in
terms of anharmonic q-bosons. Their algebra, known as
the quantum-oscillator algebra HWq or the q-boson alge-
bra, was introduced in [17–19], and is a generalisation of
the Heisenberg–Weyl algebra obtained by introducing a
deformation parameter q. The algebra is defined by:

aa† − q−1a†a = qn̂ , [n̂, a] = −a , [n̂, a†] = a† (11)

where a† is q-boson creation operator, a is q-boson anni-
hilation operator, n̂ is the boson number operator, and
the boson commutation relations of the harmonic oscilla-
tor may be recovered for the value q = 1. The realization
of Uq(su(2)) is taken from [20]:

Ĵ+ = a+[2j − n̂]q , Ĵ− = a, Ĵ0 = n̂ − j (12)

where the q-number [z]q is defined as:

[z]q ≡ qz − q−z

q − q−1
.

In general j may be any complex number but in our con-
text we shall take it to be real. These formulae indeed
produce the standard relations of Uq(su(2)) [1]:

[Ĵ0, Ĵ±] = ±Ĵ± , [Ĵ+, Ĵ−] = [2Ĵ0]q. (13)

Note that for q approaching unity these algebraic relations
reduce to those of su(2).

In general the basis of our system is determined by
the application of the creation operator a† on the vac-
uum. The latter is denoted by |0〉 and is characterised by
the standard properties — the action of the annihilation
operator a on |0〉 gives zero, and it is an eigenvector of the
boson number operator:

a |0〉 = 0 , n̂ |0〉 = ν |0〉 , (14)

where ν may be an arbitrary complex number. The ex-
plicit basis is:

|n〉 ≡ (a†)n |0〉 . (15)

The action of the quantum group generators on this ba-
sis is:

Ĵ0 |n〉 = (n + ν − j) |n〉
Ĵ− |n〉 = qν [n]q |n − 1〉
Ĵ+ |n〉 = [2j − ν − n]q |n + 1〉. (16)

For j a non-negative (half-)integer and ν = 0 formu-
lae (12) realise a unitary irreducible representation of
Uq(su(2)) of dimension 2j + 1 (for real q). To be close
to this case below we shall suppose ν = 0.

Substituting (12) in (10) we obtain:

H = α
(
[2j]q ([2]q [n̂]q qεn̂ + 1) − [2]q [n̂]2q qε2j

)
(17)

where ε = ±1 and we have used

aa+ = [n̂ + 1]q , a+a = [n̂]q (18)

and the q-summation formula:

[A + B]q = [A]q qεB + [B]q q−εA . (19)

Using (19) again we can recast (17) as:

H = α
(
[n̂]q [2j − n̂]q [2]q + [2j]q

)
. (20)

The action of this Hamiltonian on our basis is:

H |n〉 = E(n) |n〉 = α
(
[n]q [2j − n]q [2]q + [2j]q

)
|n〉 .

(21)
One motivation for (10) is that for q = 1 and choosing
α = hcωe/4j we obtain from (21) (essentially) the Morse
case:

E(n)q=1 = hcωe

(
n +

1
2
− n2/2j

)
(22)

This expression has a local maximum at n = j which is:

(Eq=1)max = E(j)q=1 =
1
2
hcωe(j + 1) (23)

and the bound levels are below this value of j, i.e., we
have the restriction:

n = 0, 1, . . . , [j] (24)
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Comparing this with the Morse case we identify j with
vM in (8) which leads to the relation:

1
xe

= 2j + 1. (25)

This limiting case prompts us to choose in the general
case: α = hcωe/[2]q [2j]q and then we have:

H ′ = H/(hcωe) =
[n̂]q [2j − n̂]q

[2j]q
+

1
[2]q

. (26)

The eigenvalues are now:

E ′(n) = E(n)/(�ω) =
[n]q [2j − n]q

[2j]q
+

1
[2]q

=
sinh(n/p) sinh

(
(2j − n)/p

)

sinh(1/p) sinh(2j/p)
+

1
2 cosh(1/p)

(27)

where we have introduced a parameter p such that q =
e−1/p.

This eigenvalue function is similar to that given in for-
mula (25) of Bonatsos et al. [6], though their approach is
not the same as the present one, (a pair of q-bosons is used
and the Hamiltonian is different). Furthermore, we note
that in [6] their formula (25) does not follow (for q �= 1)
from the Hamiltonian given in their formula (24).

Note that in this form it is transparent that the eigen-
value function has only one extremum as the extremal
condition is:

sinh
(
(2j − 2n)/p

)

p sinh(1/p) sinh(2j/p)
= 0 (28)

and this is a local maximum at n = j (as in the unde-
formed Morse case (22)), the maximum value being:

Emax = E ′(j) = ([j]q + 1)
1

2 cosh(1/p)
(29)

which is, of course, a deformation of (23).

3.2 The case of positive molecular constant ye

One way to use this Hamiltonian is to suppose that q is
real and close to 1. We then expand to second order in
1/p: q = e−1/p = 1 − 1/p + 1/2p2 + · · · and:

qm = 1 − m/p + m2/2p2 + . . . ,

[m]q =
sinh(m/p)
sinh(1/p)

= m{1 + (m2 − 1)/6p2} + · · · (30)

Further, one would consider the eigenvalues of n̂ which
are significantly smaller than p and apply (30) for m → n̂.
However, using this directly would not give exactly the
Dunham expansion. In order to be closer to the Dunham

expansion we expand the eigenvalue function (27) as a
function of n around −1/2 (as in [6]) and obtain:

E ′(n) =

{

1 − sinh
(
(2j + 1

2 )/p
)

sinh(2j/p)

}
1

2 cosh(1/2p)

+

{
n + 1

2

p
sinh

(
(2j + 1)/p

)

− (n + 1
2 )2

p2
cosh

(
(2j + 1)/p

)

+
2
3

(n + 1
2 )3

p3
sinh

(
(2j + 1)/p

) − · · ·
}

× 1
sinh(1/p) sinh(2j/p)

. (31)

This expansion is also appropriate in the region when
n + 1/2 is much smaller than p. Note that we make no re-
striction on the values of j, an assumption which turns out
to be justified. We also see that the coefficient of (n+1/2)3
is positive which means that this expression corresponds
to the case when the molecular constant (Dunham co-
efficient) ye is positive. The cases of negative molecular
constant ye will be considered below.

We consider the expression in (31) truncated to a cubic
polynomial in (n + 1/2). The quadratic equation for its
extrema has the following solutions:

n± = 1
2p

{

coth
(

2j + 1
p

)
±

√

coth2

(
2j + 1

p

)
− 2

}

− 1
2

(32)
One is inclined to require that the discriminant be strictly
positive:

tanh2

(
2j + 1

p

)
<

1
2

or
2j + 1

p
<

1
2

loge(3 + 2
√

2) ≈ 0.88 (33)

In this case there are two extrema. The extremum at n−
is a local maximum. The value n− is a deformation of the
Morse value j, and if j � p one can expand n− as

n− = j +
(2j + 1)3

12p2
+ · · · (34)

The extremum at n+ is a local minimum. The value n+

grows rapidly with p:

n+ =
p2

2j + 1
− 1

2
+ O(p−2).

Thus, the eigenvalues n cannot be near n+, and one cannot
use the potential well around it.

Thus, when the restriction (33) holds, and similar to
the Morse case, we shall be interested in the region:

n = 0, 1, . . . , [n−]. (35)
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However, j and p will be determined by the experimen-
tal data and we shall see that there are cases when (33)
does not hold. In those cases, the potential does not have
a local maximum, i.e., there are cases when the Dunham
expansion has a different behaviour from the Morse expan-
sion. Yet we are interested in small values of n when the
two potentials do not differ significantly. Thus, in these
cases we shall be interested in the Morse region (24):
n = 0, 1, . . . , [j], though j shall be determined from the
Dunham expansion.

We would like now to check how the expansion (31)
corresponds to the Dunham expansion, which can be done
independently of whether (33) holds or not.

First, we take the ratio of the coefficients of the lin-
ear to the cubic term in (n + 1/2) both in the Dunham
expansion (9) and in our expression (31), and we find:

1
ye

=
3
2
p2. (36)

This means that p can be determined from the value
of ye as

p =
√

2
3ye

. (37)

By taking the ratio of the coefficients of the linear to the
quadratic terms in (n + 1/2) both in the Dunham expan-
sion (9) and in our (31), we obtain:

1
xe

= p tanh
2j + 1

p
. (38)

This is a deformation of the usual relation of the Morse
model (25), and if j � p one can expand:

1
xe

= 2j + 1 − (2j + 1)3

3p2
+ ...

when p → ∞, and correspondingly, ye → 0, the Morse
case applies.

More important is that (38) gives a test for the applica-
bility of our model. By noting that the function tanh z < 1
for any real z, it follows that we have:

1 > tanh
2j + 1

p
=

1
p xe

=

√
3ye

2x2
e

.

Thus, we have the following restriction on our model for
the experimental values xe and ye:

ye

x2
e

<
2
3
. (39)

As ye/x2
e → 2/3 (with values below 2/3), j → ∞.

Our model is not applicable (even if we consider com-
plex j) for the case ye/x2

e > 2/3.
In the cases when (39) holds from (38) we determine

the value of j using the value of p from (37), i.e.,

j = 1
2

{√
2

3ye
arctanh

(√
3ye

2x2
e

)

− 1

}

. (40)

It is useful to write down the formula for n− in terms of
xe and ye using (37) and (38):

n− =
xe

3ye

(

1 −
√

1 − 3ye

x2
e

)

− 1
2

(41)

from which it is clear that the restriction (33) translates
into:

ye

x2
e

<
1
3

(42)

which is indeed stronger than (39), but is not a restriction
on the applicability of our model.

In the case when ye/x2
e � 1 we can use the expansion:

arctanh z = z + z3 + · · ·

and obtain from (40):

j =
1

2xe
− 1

2
+

3ye

4x3
e

+ · · · (43)

3.3 The case of negative molecular constant ye

In order to accommodate the situation when the molecu-
lar constant ye is negative we have to consider the defor-
mation parameter q to be a phase (though not a root of
unity), or equivalently to make the replacement: p 
→ ip,
then q 
→ q = ei/p. Almost everything may be obtained
from what we have in the case of real q by this replace-
ment. In particular, one needs:

sinh(z/p) 
→ −i sin(z/p) ,

[z]q 
→ sin(z/p)
sin(1/p)

,

cosh(z/p) 
→ cos(z/p) ,

(1/p) sinh(a/p) 
→ −(1/p) sin(a/p),

(1/p3) sinh(a/p) 
→ +(1/p3) sin(a/p),
sinh(1/p) sinh(a/p) 
→ − sin(1/p) sin(a/p).

We start with the analogues of (20):

H ′
− =

[n̂]q [2j − n̂]q
[2j]q

+
1

[2]q
, (44)

and (27)

E ′
−(n) = =

sin(n/p) sin
(
(2j − n)/p

)

sin(1/p) sin(2j/p)
+

1
2 cos(1/p)

. (45)

This function is very different from (27), in particular,
it has an infinite number of extrema since the extremum
condition is:

sin
(
(2j − 2n)/p

)

p sin(1/p) sin(2j/p)
= 0 (46)
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i.e., the extrema are at: n = j + kpπ/2, k = 0,±1,±2, ...
We would again be interested in the region restricted by
the first positive local maximum:

n = 0, 1, . . . , [j].

This is also consistent with our aim of fitting the Dunham
expansion. The maximal value is:

E ′
−,max =

(
sin(j/p)
sin(1/p)

+ 1
)

1
2 cos(1/p)

(47)

which is a deformation of (23).
The expansion of n around −1/2 is:

E ′
−(n) =

{

1 +
sin

(
(2j + 1

2 )/p
)

sin(2j/p)

}
1

2 cos(1/2p)

+

{
n + 1

2

p
sin

(
(2j + 1)/p

)

− (n + 1
2 )2

p2
cos

(
(2j + 1)/p

)

− 2
3

(n + 1
2 )3

p3
sin

(
(2j + 1)/p

) − · · ·
}

× 1
sin(1/p) sin(2j/p)

(48)

i.e., this is suitable for the Dunham expansion with nega-
tive ye. We consider the expansion in (48) truncated to a
cubic polynomial in (n+1/2). As such it has two extrema
at the points:

n± =
1
2
p

{

∓
√

cot2
(

2j + 1
p

)
+ 2 − cot

(
2j + 1

p

)}

− 1
2
.

(49)
The value n+ is negative and thus inaccessible. The ex-
tremum at n− is a local maximum.

Further, we take the ratio of the coefficients of the
linear to the cubic terms in (n+1/2) both in Dunham’s (9)
and in our (48) and we obtain:

1
ye

= −3
2
p2 < 0. (50)

This means that p is determined from the value of ye :

p =
√
− 2

3ye
, ye < 0. (51)

We next similarly take the ratio of the coefficients of the
linear to the quadratic terms in (n + 1/2) and obtain:

1
xe

= p tan
2j + 1

p
. (52)

From this we could determine the value of j using the value
of p from (51). However, further we have to distinguish
whether xe > 0 (which holds in most cases) or xe < 0.

• xe > 0 ⇒ tan
2j + 1

p
> 0

Then we have for the value n−:

n− =
xe

3|ye|

(√

1 +
3|ye|
x2

e

− 1

)

− 1
2
, xe > 0, ye < 0.

(53)
This is a deformation of the Morse value, and if j � p we
can expand:

n− = j − (2j + 1)3

12p2
+ · · · (54)

Thus, similarly to the Morse case we shall be interested
in the region:

n = 0, 1, . . . , [n−]. (55)

The value of j is obtained from (52):

j =
1
2

{√
− 2

3ye
arctan

(√

− 3ye

2x2
e

)

− 1

}

,

xe > 0 , ye < 0 . (56)

Since the function arctan is multivalued, in the last for-
mula we take the value which is closest to the Morse value
from (25). Analogously, we use this for the following ex-
pansion which is valid when −ye � x2

e:

j =
1

2xe
− 1

2
− 3ye

4x3
e

+ · · · (57)

• xe < 0 ⇒ tan
2j + 1

p
< 0

In this case the relevant parameter is j′ which is comple-
mentary to j with respect to pπ/2. Then,

tan
2j + 1

p
= tan

(
π − 2j′ + 1

p

)
= − tan

2j′ + 1
p

and instead of (52) we shall use:

1
|xe| = p tan

2j′ + 1
p

. (58)

Further, for the value at which there is maximum we have:

n− =
1
2
p

{√

cot2
(

2j′ + 1
p

)
+ 2 + cot

(
2j′ + 1

p

)}

− 1
2

=
|xe|
3|ye|

(√

1 +
3|ye|
x2

e

+ 1

)

− 1
2
.

(59)

This is not a deformation of the Morse value, since it in-
creases with p and will not be useful for our purpose. As
with a case above we shall be interested in the region:

n = 0, 1, . . . , [j′]. (60)
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The value of j′ is obtained from (58):

j′ = 1
2

{√
− 2

3ye
arctan

(√

− 3ye

2x2
e

)

− 1

}

,

xe < 0 , ye < 0 . (61)

In the last formula we take the value closest to the Morse
value with respect to j′, i.e., j′ = 1/(2|xe|) − 1/2. Anal-
ogously, we use this for the following expansion which is
valid when −ye � x2

e:

j′ =
1

2|xe| −
1
2
− 3ye

4x3
e

+ · · · (62)

4 Analysis of experimental data

In this section we calculate the values of the independent
parameters p and j of the model. These parameters are
derived in terms of the well-known experimental molecu-
lar constants xe and ye. We can verify the applicability
of the model and its restrictions by applying it to 161
electronic states of diatomic molecules for which values
of the molecular constants are known. Furthermore, hav-
ing the model parameters p and j one can calculate the
vibrational energies of diatomic molecules using the eigen-
values of the q-deformed Hamiltonian as described in the
previous section.

The parameter p is obtained by a re-parametrization
of the quantum deformation parameter q (q = e−1/p or
q = ei/p respectively). This parameter is directly related
to the coefficient ye in the cubic term of the Dunham
expansion. The other parameter j is related to the coef-
ficients xe and ye in the Dunham expansion. From our
model the number of bound vibrational states generated
by the electronic states of the diatomic molecule can be
easily estimated. When the potential curve has a maxi-
mum, the number of vibrational states is determined by
the value of [n−]. In the absence of the local maximum,
the number of vibrational levels is restricted by [j]. To re-
mind, the symbol [κ] denotes the largest integer smaller
than or equal to κ.

In the tables below we have calculated the indepen-
dent parameters p and j of the model, using the values
of the molecular constants compiled by Herzberg [13] for
161 electronic states of diatomic molecules. The molecules
are listed in alphabetical order in the first column of the
tables1 and the corresponding electronic states are given
in the second column. For convenience, in the third and
fourth column we display the values of the anharmonic
molecular constants xe and ye calculated from the data
published in [13]. The values of the model parameters p
and j are given in the fifth and sixth columns. In the sev-
enth column, we give the value of [n−] where appropriate.

1 Some of the elements in the three tables have not been
given an isotope number. This is a reflection of the information
recorded in the source [13].

In Table 1 we display the cases when the molecular
constants xe and ye are positive and the values of the
parameters p and j are calculated from (37) and (40) re-
spectively. In the cases when ye/ (xe)

2
< 1/3, the potential

curve for a given electronic state has a local maximum and
the maximal number of vibrational levels is determined by
the value of [n−], where [n−] is calculated from (41).

When 1/3 < ye/ (xe)
2

< 2/3, Dunham potential curve
truncated to the cubic term does not have a local ex-
tremum, which is indicated by “–” in the column for [n−].
In these cases the maximal number of vibrational levels in
the model is determined by the value [j].

As discussed in the previous section, when ye/ (xe)
2

>
2/3, the model cannot be applied in its present form.
The experimental data in [13] shows that this condi-
tion is satisfied for 30 electronic states of the following
diatomic molecules: 75As2 state X 1Σ+

g , 11B79Br state
A 1Π, 209Bi19F state A, 12C2 state B 3Πg, 40Ca19F state
A 2Π, 1H2 state B 1Σ+

u , 1H2H states C 1Πu and B 1Σ+
u ,

2H2 states C 1Πu, B 1Σ+
u and X 1Σ+

g , 3H2 state a 3Σ+
g ,

Hg35Cl state X 2Σ+, Hg1H+ state X 1Σ+, Hg2H+ state
X 1Σ+, 113In1H state X 1Σ+, 39K2 state B 1Πu, 7Li2H
state X 1Σ+, 24Mg1H state A 2Πr, 55Mn16O state A,
23NaK state C1Π, 14N16O state B 2Π, 31P2 state A 1Σ+

u ,
Pb2 state A, 80Se2 state X 1Σ+, 28Si16O state A 1Π,
28SiTe state E, YbCl state B 2Π and 90Zr16O state a 1Σ.

In Table 2 we show the cases when the molecular
constant xe is positive while the molecular constant ye

is negative and the values of the parameters p and j
are calculated from (51) and (56) respectively. Here, the
model works without any restrictions. The number of vi-
brational levels is determined by [n−], where [n−] is calcu-
lated from (53). The experimental data shows that when
[n−] ∼ j, the value of j is at least three times smaller than
the value of p.

Our model in its present form is designed for molecules
where the potential is such that, in fact, only terms up to
third order are needed to describe molecular vibrations.
This is in agreement with the experimental data suggest-
ing that contributions of terms of higher order are seldom
used. However, the model can be easily extended to in-
clude fourth order and higher order terms if necessary.

The model gives a better fit for those electronic
molecular states the potential of which has a maximum.
These are the fourteen molecular states in Table 1 of the
molecules 9Be16O, 209Bi35Cl, 40Ca35Cl, 12C16O+, 1H2,
2H2, 1H35Cl, 39K2, 7Li2, 14N2, 23Na79Br, 28Si16O, Sr19F
and 64Zn1H as well as all molecular states listed in Table 2.

There are six electronic states A1Σ+ of the diatomic
molecules 133Cs1H, 39K2H, 7Li1H, 7Li2H, 23Na1H and
Rb1H in [13], for which the values of both molecular con-
stants xe and ye are negative. The model can accommo-
date these cases and the values of the parameters p and j′,
calculated from (51) and (61), are given in Table 3. To
remind the reader that j′ replaces j as independent pa-
rameter in these cases. The number of vibrational levels is
determined by [j′]. As we have pointed out the case xe < 0
is not a deformation of the Morse potential. Thus, it does
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Table 1. Parameters of the model for positive molecular constants xe and ye.

molecule state molecular constants model parameters

103xe 104ye p j [n−]
27Al1H X 1Σ+ 17.32 17 1.545 26 65. 68 44. 53 –
27Al2H X 1Σ+ 12.49 06 0.8086 14 90. 80 62. 31 –

9Be16O
A1Π

X1Σ+

7. 353 8

7. 953 69

0.2 961 80

0.1502 70

150. 03

210.63

112. 54

71. 99

–

81
209Bi35Cl B 9. 338 29 0.03965 3 410. 03 54. 31 55
11B16O A 2Π 8. 849 85 0.3886 73 130. 97 84.90 –

40Ca35Cl A 2Π 3. 178 95 0.03288 57 450. 25 194. 16 272
12C16O X 1Σ+ 6. 177 01 0.1413 36 217. 18 104. 02 –

12C16O+ A 2Π 8. 655 24 0.08386 36 281.95 60. 87 63

1H2

d 3Πu

a 3Σ +
g

X 1Σ +
g

2 7.94 34

26.88 73

26.84 52

3. 710 61

3. 452 38

0.6598 11

42. 39

43. 94

100. 52

25. 69

26. 82

19. 06

–

–

19

1H2H

d 3Πu

e 3Σ +
u

a 3Σ +
g

X 1Σ+
g

24.20 92

27.13 67

23.29 28

24.87 71

2. 822 95

2. 739 91

2. 599 16

3. 816 78

48. 60

49. 33

50. 64

41. 79

30. 02

23. 33

31. 10

40. 66

–

–

–

–

2H2

d 3Πu

e 3Σ +
u

a 3Σ +
g

D 1Πu

19.62 79

22.16 95

19.06 84

18.55 36

1. 430 09

1. 843 71

1. 802 91

0.3606 96

68. 28

60. 13

60. 81

135.95

32. 42

28. 76

39. 11

28. 01

–

–

–

28

1H3H
d 3Πu

a 3Σ +
g

22.42 67

21.97 51

2. 369 73

2. 305 91

53. 04

53. 77

31. 95

32. 92

–

–
3H2 d 3Πu 16.13 21 1. 158 80 75. 85 43.06 –

1H35Cl X 1Σ+ 17.40 95 0.1873 07 188. 66 29. 16 29
1H35Cl+ A 2Σ+ 24.64 83 2. 129 79 55. 95 25. 19 –
1H19F X 1Σ+ 21.76 4 2. 368 53. 06 34. 43 –

Hg2H X 2Σ 50.17 33 11.18 42 24. 41 13. 49 –
127I2 A 3Πu 22.72 73 1. 818 18 60. 55 27. 40 –
39K2 D 1Πu 14.61 04 0.1623 38 202. 65 30. 26 35

KBr X 1Σ+ 3. 030 3 0.04761 9 374. 12 174. 08 –

KCl X 1Σ+ 3. 214 29 0.03928 57 411. 94 164. 61 –
39K127I X 1Σ+ 3. 301 89 0.04716 98 375. 94 208. 96 –

7Li2 A 1Σ+
u 6. 161 68 0.07 046 39 307. 59 89. 76 96

7Li1H X 1Σ+ 1 6.50 48 1. 161 74 75. 75 41. 09 –

Li127I X 1Σ+ 3.333 33 0.03777 78 420. 08 187. 61 –
14N2 X 1Σ+

g 6. 126 44 0.03182 73 457. 67 84. 86 87
23Na79Br X 1Σ+ 3. 650 79 0.02539 68 512. 35 152. 33 165
23Na1H X 1Σ+ 16.82 31 1. 364 95 69. 89 43. 46 –
23Na127I X 1Σ+ 2. 622 38 0.03 496 5 436. 65 293. 55 –

16O2 X 3Σ−
g 7. 639 39 0.3454 91 138. 91 121. 64 –

Rb1H X 1Σ+ 15.10 51 0.8006 23 91. 25 41. 44 –
28Si14N B 2Σ+ 16.23 86 1. 136 95 76. 57 42. 01 –
28Si16O X 1Σ+ 4. 868 64 0.02648 89 501. 68 108. 59 112

Sr19F A 2Π 4. 467 3 0.03 953 4 410. 65 125. 03 136
64Zn1H X 2Σ+ 34.3 2. 475 7 51. 89 15. 99 17
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Table 2. Parameters of the model for positive molecular constant xe and negative molecular constant ye.

molecule state molecular constants model parameters

103xe −104ye p j [n−]
109Ag81Br B 3Π+

0 24.613 3. 3186 44. 82 16. 00 14
109Ag35Cl B 3Π+

0 21.352 3. 380 8 44. 41 17. 53 16
109Ag127I B 3Π+

0 12.866 39.08 8 13. 06 8. 67 7
27Al79Br A 1Π 21.534 17.73 2 19. 39 10. 90 9
27Al35Cl A 1Π 9. 712 4. 800 4 37. 27 22. 30 19
27Al19F A 1Π 10.329 2. 272 5 54. 16 28. 23 25

197Au1H
A 1Σ+

X 1Σ+

32.979

18.707

23.53 93

0.1908 9

16. 83

186.88

8. 45

25. 53

7

25
197Au2H X 1Σ+ 13.245 0.1761 5 194. 54 35. 51 34
11B35Cl A 1Π 13.407 1. 179 2 75. 19 28. 88 26

9Be1H
A 2Π

X 2Σ+

1 9.064

17.245

2. 395

2. 428 8

52. 76

52. 39

20. 14

21. 40

18

19

9Be1H+ A 1Σ+

X 2Σ+

10.026

17.91

0.2 5744

0.09 452 2

160. 92

265.58

44. 14

27. 02

42

26

9Be2H+ A 1Σ+

X 2Σ+

7. 7435

13.261

1. 459 3

0.36416

67. 59

135.30

36. 29

33. 90

32

32
9Be16O B 1Σ+ 5. 6503 0.0019696 1839.8 87. 72 87

209Bi2
B

X 1Σ+
g

2. 2759

1.8684

0.035852

0.1 34329

431.22

222.78

170.86

130.53

159

117
209Bi79Br A 3. 9291 7. 57854 29. 66 21. 07 18

12C2
c 1Πg

A 3Πg

8. 7392

9. 1935

22.22 1

2. 833 5

17.32

48. 51

11.80

27. 42

10

24

35Cl +
2

A 2Π

X 2Π

9. 2958

7. 3123

0.22715

0.6728

171. 32

99. 54

47. 53

46. 36

45

42
35Cl19F A 3Π0+ 6.6882 12.06 7 23. 51 16.13 14
12C16O d 3Πi 6.7007 0.9887 6 82. 112 43. 34 39

12C16O+ X 2Σ+ 6. 8484 0.003161 4 1452. 2 72. 26 72

133Cs2
B 1Πu

X 1Σ+
g

2. 2784

1. 9064

0.054952

0.03 912 8

348. 31

412. 77

156. 24

186. 09

143

171
63Cu2H A 1Σ+ 17.022 3. 379 6 44. 41 20. 01 18

1H2 e 3Σ+
u 29.966 1. 971 9 58. 15 14. 65 14

202Hg81Br X 3Σ 5. 2095 0.4833 5 117. 44 59.50 54

Hg1H
A 2Π3/2

X 2Σ+

20.248

5 9.845

2. 080 4

21.26 8

56. 61

17. 70

19. 81

6. 20

18

5

Hg1H+ A 1Σ+ 26.564 47.21 2 11. 88 7. 02 6

Hg2H+ A 1Σ+ 18.865 23.75 9 16. 75 10.09 8

127I2
G 1Σ+

u

X 1Σ+
g

3. 6039

2. 8555

0.2119 9

0.04171 1

177. 34

399. 79

88.36

143. 3

80

134
127I35Cl A 3Π1 9. 28469 1. 60515 64. 45 32.74 29
115In1H A 1Σ+ 41.7581 46.96 93 11. 91 6. 107 5

In16O X 2Σ 5. 27671 4. 05354 40. 55 27. 08 24

7Li2
B 1Πu

X 1Σ+
g

10.1746

7. 37558

2. 361 97

0.165040

53. 13

200.98

28. 06

59.14

25

56
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Table 2. Continued.

molecule state molecular constants model parameters

103xe −104ye p j [n−]
24Mg1H X 2Σ+ 21.0604 1. 002 87 81. 53 21. 00 20

24Mg1H+ A 1Σ+

X 2Σ+

6. 00335

17.8140

3. 178 25

3. 008 32

45.80

47.08

29.33

20.05

26

18

24Mg2H + A 1Σ+

X 2Σ+

4. 24725

13.2888

1. 432 07

1. 361 49

68.23

69. 98

43. 46

28.25

38

26

14N2

C 3Πu

A 3Σ+
u

a 1Πg

8. 39271

9. 51197

7. 55965

10.56 46

0.1711 89

2. 062 04

25. 12

197. 34

56. 86

16. 62

47. 80

32. 62

14

46

29

14N +
2

B 2Σ+
u

X 2Σ+
g

9. 58328

7. 31065

2. 221 22

0.1812 26

54. 79

191.80

29. 28

58.91

26

56

23Na2
B 1Πu

X 1Σ+
g

5. 09169

4. 55944

0.7561 19

0.1695 66

93. 90

198. 28

52. 31

82. 36

47

76
23Na1H A 1Σ+ 1 7.4179 6. 342 56 32. 42 16. 63 15

Na23K
D 1Π

A 1Σ+

4. 25894

1. 09205

0.9905 09

0.4871 63

82.04

116. 98

50.14

83.95

44

75

14N16O

A 2Σ+

X 2Π3/2

X 2Π1/2

6. 10636

7. 33842

7. 33707

1. 180 79

0.006303 58

0.006302 42

75. 14

1028.40

1028. 49

42. 35

67.24

67.25

38

67

67

16O2
B 3Σ−

u

b 1Σ+
g

11.4256

9. 73695

5. 358 67

0.07503 38

35. 27

298. 08

20.45

48.95

18

48
16O1H A 2Σ+ 29.8475 2. 034 27 57.25 14.66 14
31P2 X 1Σ+

g 3. 59289 0.06829 57 312.43 113.18 106

Pb79Br A 2Σ 2. 62295 1. 836 07 60.26 42.11 37

PbSe D 2. 78361 0.2100 84 178.14 98.41 88

85Rb2
C

X 1Σ+
g

1. 84315

16.7598

0.3562 59

0.1449 02

136. 80

214.50

90. 04

28.60

80

28

28Si32S
E

D 1Π

3. 46964

4. 64844

0.8153 66

0.8789 06

90.43

87. 09

56.77

51.15

50

45
28SiSe E 6. 314 77 1. 036 27 80.21 43.69 39

120Sn16O D 1Σ+ 5. 28665 2. 317 20 53.64 34.22 30

SnS E 3. 69429 0.4 067 11 128.03 71.77 64
120Sn32Se E 3. 91658 0.008138 35 286. 21 103.74 97

SnTe
I

B

5. 44188

6. 64351

0.1306 05

0.5644 81

225.93

108.68

76.64

50.87

72

46

Sr19F B 2Σ 3. 80446 0.1431 79 215.78 94.81 87
205Tl81Br A 3Π+

0 4 7.5443 20.31 02 18.12 7.29 6

Zn1H+ X 1Σ+ 2 0.3549 1. 043 84 79. 92 21. 53 20

Table 3. Parameters of the model for negative molecular constants xe and ye.

molecule state molecular constants model parameters

−103xe −104ye p j′ j
133Cs1H A 1Σ+ 27.94 12 17.15 69 19. 71 10.02 20. 94
39K2H A 1Σ+ 11.33 22 2. 745 61 49. 28 25.65 51.75
7Li1H A 1Σ+ 123. 487 178.5 27 6. 111 2. 324 7.275
7Li2H A 1Σ+ 77.39 98 65.20 91 10.11 4. 084 11.80

23Na1H A 1Σ+ 17.41 79 6. 342 56 32. 42 16.63 34.30

Rb1H A 1Σ+ 1 6.76 21 6. 909 24 31. 06 16. 441 32. 35
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not behave like (deformed) oscillator models do and yet
our model can handle it.

5 Conclusions and outlook

In this paper we have considered a q-deformation of a gen-
eral Hamiltonian constructed from the raising and lower-
ing generators of the quantum group deformation of the
algebra su(2) and have obtained an expression for the
eigenvalues of this Hamiltonian which can be interpreted
as the phenomenological Dunham expansion of the vibra-
tional energies of diatomic molecules. The expansion is
truncated to the cubic term mainly for practical reasons
as the experimental results suggest that the contribution
of terms of higher order is often negligibly small and sel-
dom used. We have formulated a model of the anharmonic
vibrations of diatomic molecules which in different approx-
imations leads to Morse or Dunham results. The parame-
ters of the model are obtained in terms of the well-known
experimental molecular constants and this gives a clear
test for the applicability of the model and its restrictions.
The model can accommodate both the positive and the
negative values of the anharmonic constant ye. Using all
data available in [13], we have tested the model in a global
fashion for a large set of diatomic molecules and conclude
that it fits well with the experimental data for all states,
except for about 30 electronic states for which the values
of xe are not much larger than the values of ye, as required
by the model. In these cases the model could be expanded
by adding to the Hamiltonian terms corresponding to the
rotational energies in order to obtain a q-deformed ver-
sion corresponding to the general Dunham expansion (2).
Next, in order to test these ideas further, intensity data
should be studied. This would involve a procedure where
a consistent q-deformed dipole operator is defined and the
wave functions for each molecule evaluated within our ap-
proximation. Finally, a more ambitious project would be
to extend these studies to polyatomic molecules, following,
for example, the methodology of reference [9].
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